Forecasting models and prediction intervals for the multiplicative Holt–Winters method
نویسندگان
چکیده
منابع مشابه
Forecasting with prediction intervals for periodic autoregressive moving average models
Periodic autoregressive moving average (PARMA) models are indicated for time series whose mean, variance and covariance function vary with the season. In this study, we develop and implement forecasting procedures for PARMA models. Forecasts are developed using the innovations algorithm, along with an idea of Ansley. A formula for the asymptotic error variance is provided, so that Gaussian pred...
متن کاملPrediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models
In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting (STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (anal...
متن کاملPrediction Intervals for Multilevel Models
There are many methods for constructing prediction intervals for differences in observations. This document will explain several of these methods in the context of different models using data from a kiwi yield experiment as an example. 1. KIWI DATA In an experiment (discussed in more detail in class), kiwi yields were measured in a designed experiment. There were three blocks (north, east, and ...
متن کاملPrediction intervals for regression models
This paper presents simple large sample prediction intervals for a future response Yf given a vector xf of predictors when the regression model has the form Yi = m(xi) + ei where m is a function of xi and the errors ei are iid. Intervals with correct asymptotic coverage and shortest asymptotic length can be made by applying the shorth estimator to the residuals. Since residuals underestimate th...
متن کاملEmpirical prediction intervals improve energy forecasting.
Hundreds of organizations and analysts use energy projections, such as those contained in the US Energy Information Administration (EIA)'s Annual Energy Outlook (AEO), for investment and policy decisions. Retrospective analyses of past AEO projections have shown that observed values can differ from the projection by several hundred percent, and thus a thorough treatment of uncertainty is essent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Forecasting
سال: 2001
ISSN: 0169-2070
DOI: 10.1016/s0169-2070(01)00081-4